At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

Are you familiar with integration by parts?

yes ... but i am not able to solve using that ...

\[\int\limits_{?}^{?} udv = uv - \int\limits_{?}^{?} vdu\]
What should we choose as our u and dv?

may be
v=e^x
and
u=cos(x)

I thought he was trying to integrate
\[\int\limits_{}e^x/cosx dx\]

...Guess that'll teach me to read the problem carefully. One moment to do the correct work.

the problem is
\[\int{\frac{e^x}{\cos{x}}}\]

The actual problem I have is little more complex
\[\int{\frac{e^{ax}}{\sqrt{b+c\cos{dx}}}}\]

is the dx in the square root?

I am sorry ...
\[\int{\frac{e^{ax}}{\sqrt{b+c\cos{(x)}}}dx}\]

What level of math is this for? I'm having difficulty finding a way to make this clean...

Well.... thats explains why I'm stummped