anonymous
  • anonymous
Looking for the solution to equations of the form y''+y=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sinx, cosx?
anonymous
  • anonymous
If y'' is proceded by a constant?
anonymous
  • anonymous
y=Csinx and y=Ccosx......anybody?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
There is an e^ax factor before the trig functions, where a is a root of the characteristic equation. Should be something like y = ce^ax sinx + ce^ax cosx.
anonymous
  • anonymous
That rings a bell, happen to know of a good tutorial/reference?
anonymous
  • anonymous
http://tutorial.math.lamar.edu/Classes/DE/ComplexRoots.aspx
anonymous
  • anonymous
hope that helps.
anonymous
  • anonymous
Great stuff, cheers matey.
anonymous
  • anonymous
cheers
anonymous
  • anonymous
this is the generic equation, but since \[y=e^{ax}[C_{1}\cos(x)+C_{2}\sin(x)]\rightarrow a=0\] this will be you final equation \[y=C_{1}\cos(x)+C_{2}\sin(x)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.