CALCULUS QUESTION: Using l'Hopital's Rule evaluate the following limit: lim (1 + 5/x)^(x/4) as x ->+infinity

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

CALCULUS QUESTION: Using l'Hopital's Rule evaluate the following limit: lim (1 + 5/x)^(x/4) as x ->+infinity

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

when you substitute in infinity for x you first get 1^(infinity) which is indeterminate. So you have to manipulate the equation. If you set the limit equal to L and take the ln of both sides you end up with ln(L) = lim x-> infinity [(1+5/x)]^(x/4) which is equivalent to ln(L) = lim x-> infinity (x/4)[(1+5/x)]
This is now at the stage of an infinity times 0. So put the x in the denominator to get ln(L) = lim x-> infinity (1/4)ln[(1+5/x)]/x^(-1) to force a 0/0 case and take the derivatives of the numerator and denominator to get a messy equation to simplifies to ln(L) = lim x-> infinity 5/[4(1 + 5/x)] or just ln(L) = 5/4 so L = e^(5/4)
If you remember that lim x->infinity (1 + 1/x)^(x) = e then the solution should make sense even if the explanation is confusing.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah that makes sense, thank you

Not the answer you are looking for?

Search for more explanations.

Ask your own question