anonymous
  • anonymous
a circle of radius 5 centered at the point 2,1 and traced out counterclockwise
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ok, what do you need to know about it?
anonymous
  • anonymous
find parameters
anonymous
  • anonymous
x = 2 + 5cos(t) y = 1 + 5sin(t) where t is between 0 and 2π

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
how did you come up with that can u please show me?
anonymous
  • anonymous
Circles are defined by the equation (x-a)^2 + (y-b)^2 = r^2 where (a, b) is the center and r is the radius.
anonymous
  • anonymous
i understand that you plugged in the points into the equation and you got (x-2)^2 + (y-1)^2 = 5^2 . i don't understand what happend next
anonymous
  • anonymous
Right. So if you remember that sin^2(x) + cos^2(x) = r^2 (a trig identity)
anonymous
  • anonymous
If we want to rewrite this in terms of parametric we want (x-2)^2 = sin^2(t) and (y-1)^2 = cos^2(t) Solving each of these yields what I posted before and the 5 is just to factor for the radius.
anonymous
  • anonymous
can you please show me how u solved for one of them (cos)
anonymous
  • anonymous
The 5 is because if you want sin^2(t) + cos^2(t) [a trig identity that equals 1] to equal 25 (5^2) then you have to multiply the original equation by 25 so 25sin^2(t) + 25cos^2(t) = 5^2 (y-1)^2 = 25cos^2(t) so if you take the square root of both sides you'd get (y-1) = 5cos(t) and then adding 1 to both sides yields y = 1 + 5cos(t).
anonymous
  • anonymous
if it is counterclockwise should cos be equal to x
anonymous
  • anonymous
I think setting 0≤t≤2π handles the counterclockwise part (if you think about your unit circle this should make sense). I do know that parametric equations are not unique in that there are multiple ways to express the same shape with different parametric curves.
anonymous
  • anonymous
okay thank you for your help

Looking for something else?

Not the answer you are looking for? Search for more explanations.