How do I solve "integral [ sin(x) * cos(x) ] dx" ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How do I solve "integral [ sin(x) * cos(x) ] dx" ?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{?}^{?} [ \sin(x) * \cos(x) ] dx\]
Try u-substitution. Let u = sin(x). This means that du=cos(x)dx. Now it's ready to substitute back in the original equation to get: \[\int\limits_{?}^{?}udu\] This integral is (1/2)u^2 + c. Substituting back in for x you get: (1/2)sin^2(x) + c
is it possible to do it with partial integration?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

also ... how do i know i have to do substitution? i mean ... i can easily get the antiderivative of both sin(x) and cos(x) ..
but getting an antiderivative of cos(x)sin(x) is different. You might be able to get it using parts but it would be more work than it's worth. When ever I do integrals I always ask myself first if I know an antiderivative and if I don't I move to u-sub because I find u-sub to be the next easiest.

Not the answer you are looking for?

Search for more explanations.

Ask your own question