• anonymous
integrate (x)(x^2-1)dx by subst without first multiplying. Why not?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Just to get the practice of using a u-substitution; you COULD do it by multiplying, but that's seemingly not the point.
  • lost
\[\int\limits_{-\infty}^{\infty}(x ^{3}-x)dx\] Start by separating the terms along with the differential: \[\int\limits_{-\infty}^{\infty}x ^{3}dx - \int\limits_{-\infty}^{\infty}xdx\] Integrate both parts: \[(\frac{1}{4}x^4-\frac{1}{2}x^2+c)|^{\infty}_{-\infty}\] I'm posting the above because I just took all the time to make the equations look nice in the editor, but I know realize you were not supposed to multiply first. In this case, you were asked to integrate as given to practice u-substitution as stated earlier. \[u = x^2-1 \] \[du = 2xdx\] \[\frac{1}{2}du=xdx\] \[\frac{1}{2}\int\limits_{-\infty}^{\infty}udu\] \[(\frac{1}{2})(\frac{1}{2})u^2=\frac{1}{4}u^2+c\] Then substitute back in the value of u: \[=\frac{1}{4}(x^2-1)+c\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.