anonymous
  • anonymous
given f(x)=In(x) and g(x)=e^x, determine f(g(x)). What does this tell you about the relationship between In(x) and e^x?
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
To determine f(g(x)), you substitute g(x) everywhere there is an x in f(x). Since f(x)=ln(x), f(g(x))= ln(g(x))= ln(e^x). Using the laws of logarithms, you can move the x in the exponent in front of of the logarithm, so it reads x*ln(e). But the natural log of e is just 1, so we can conclude that f(g(x))=x. This special relationship indicates that f(x) and g(x) are inverse functions. (This happens whenever f(g(x))=x.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.