anonymous
  • anonymous
(d/dx)[(x+8)/(x^2+x+2)]=
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
quotient again...
anonymous
  • anonymous
if we get a equition=f(x)/g(x) the derivitive for the equition will be [f'(x)g(x)-f(x)g'(x)]/[g(x)]^2
anonymous
  • anonymous
hmmmyou sure? I thought it was g(prime)(x)f(x)-...first...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yep, I just check it after u asked
amistre64
  • amistre64
(d/dx)(T(x)/B(x)) = [B(x)T'(x)-T(x)B'(x)]/[B(x)]^2 is how I remember it. T for top and B for bottom.
anonymous
  • anonymous
edwardhugh is right\[d/dx(x+8)/(x^2+x+2)=\] \[[x^2+x+2-(x+8)(2x+9)]/(x^2+x+2)^2\] \[=(-x^2-16x-6)/(x^2+x+2)^2\]\[=-(x^2+16x+6)/(x^2+x+2)^2\] You can expand the denominator if you like, but this would be its simplified form

Looking for something else?

Not the answer you are looking for? Search for more explanations.