Use the Chain Rule to find dw/dt. (Enter your answer only in terms of t.) w = xey /z, x = t6, y = 9 - t, z = 4 + 4t

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use the Chain Rule to find dw/dt. (Enter your answer only in terms of t.) w = xey /z, x = t6, y = 9 - t, z = 4 + 4t

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Do you mean find dw/dt where\[w=\frac{xe^y}{z}, x=t^6, y=9-t, z=4+4t?\]
yes
i got an answer I keep on getting the same one, but my hw is online and it marks it wrong

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

OK. If you really *must* use the chain rule to solve,\[\frac{dw}{dt}=\frac{dw}{dx}\frac{dx}{dy}\frac{dy}{dz}\frac{dz}{dt}\]Then expand dx/dy and dy/dz again\[\frac{dw}{dt}=\frac{dw}{dx}(\frac{dx}{dt}\frac{dt}{dy})(\frac{dy}{dt}\frac{dt}{dz})\frac{dz}{dt}\]
this is for calc 3 so I have to multiply the leibniz notation and add them
Ah, okay, knowing the level helps.
Well, in that case, it's just\[\frac{dw}{dt}=\frac{dw}{dx}\frac{dx}{dt}+\frac{dw}{dy}\frac{dy}{dt}+\frac{dw}{dz}\frac{dz}{dt}\] where all the 'd's are partial.
yes I have computed that
I'm doing the rest...
hey lokisan do you get the divisible sign to be straight instead of this /
I get \[\frac{dw}{dt}=\frac{-4t^6}{(4+4t)^2}e^{9-t}\]
Did you need just a check on your answer, or the full-on working?
nadeem, you type "frac{}{}" into the equation editor. Your numerator and denominator go in the first and second parentheses respectively.
that's wassup..... appreciate it
no probs
is that what you get? how did you get that?
Just doing what each derivative asks of me first\[\frac{dw}{dt}=(\frac{e^y}{z}).t^6+\frac{xe^y}{z}.(-1)+(-\frac{xe^y}{z^2}).4\]
Then substitute each of the x=t^6, y=... into the above. You should find that the first two quotients cancel out, and you're left with the last quotient -> the answer.
This is what I got: \[\frac{dw}{dt}=\frac{-4t^5e^{9-t}(t^2-4t-6)}{(4+4t)^2}\]
\[\frac{dw}{dt}=(\frac{e^{9-t}}{4+4t}).t^6-\frac{t^6e^{9-t}}{4+4t}-4\frac{t^6e^{9-t}}{(4+4t)^2}\]
The first two parts cancel, the third is left over.

Not the answer you are looking for?

Search for more explanations.

Ask your own question