anonymous
  • anonymous
Show that if a collection of vectors are linearly dependent, that any collection of it's vectors must also be linearly dependent
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
helpmeplease
  • helpmeplease
Multiply each vector with C's and then set the linear combination of them equal to zero. Solve for each component. If you eventually find that the C's are nonzero, you can conclude that the vectors are dependent. If they equal zero, they are linearly independent. Depending on whether the vectors are solutions to a differential equation, you can also use the Wronskian.
helpmeplease
  • helpmeplease
Triple post, my bad.
anonymous
  • anonymous
the vector set they give us is [B1, B2,....Bm],

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

helpmeplease
  • helpmeplease
Do \[C_1B_1+C_2B_2+C_NB_N=0\] and factor where possible.
anonymous
  • anonymous
k thanks, do you see where this would be proven though?
anonymous
  • anonymous
nvm I think I read the question wrong
helpmeplease
  • helpmeplease
Are you figuring out subspaces?
anonymous
  • anonymous
the question is if the vectors B1,B2..Bn is linearly dependent, then any collection of vectors which contains these vectors is also linearly independent....which is easy
anonymous
  • anonymous
Show that two planar vectors alpha and beta are linearly independent if and only if they are not parallel
helpmeplease
  • helpmeplease
The idea is, the vectors are parallel, then they can be scalar multiples of eachother. That implies that \[C_1\] and \[C_2\] are constants, therefore they are dependent.
anonymous
  • anonymous
Show that three vectors a,b,y which lie in the same plane must be linearly dependent
helpmeplease
  • helpmeplease
Same idea as the last part. If vectors are colinear in the plane, then they must be dependent. If not, a linear combination of any two vectors can be colinear with the other, meaning that they are linearly dependent. Same logic, more gimmicks.
anonymous
  • anonymous
So if they are all in the same plane, they can be represented by some variation of (S1V1+S2V2=a)
helpmeplease
  • helpmeplease
Yep.
anonymous
  • anonymous
k thanks again, how you feeling about your test tomorrow/
helpmeplease
  • helpmeplease
Pretty good. I'm not too worried, just gotta be able to derive something if I go absent minded.

Looking for something else?

Not the answer you are looking for? Search for more explanations.