Which test of convergence should I use? sum((5-2sqrt(n))/(n^3),x,1,infinity)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Which test of convergence should I use? sum((5-2sqrt(n))/(n^3),x,1,infinity)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Better format \[\sum_{1}^{\infty}(5-2\sqrt{n})/n^{3}\]
If you break the series into \[\sum_{1}^{\infty}5/n^3+\sum_{1}^{\infty}2/n^2.5\] You'll find that both these series converge by the p-series test. Since both of these converge, the sum of the two is convergent.
Sorry, there's a minus, not a plus... but the result is the same.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oh wow. That makes a lot of sense. haha I was trying to use integral rule, which wasn't going too well. Thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question