• anonymous
I = cos(wt)+sqrt(3)sin(wt) I need to find the max and min points. I know that the answers are I max = 2 and I min = -2 , but I do not know how to show the work.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
You can use a trigonometric identity, where\[{a}\sin(x)+{b}\cos(x)={r}\sin(x+\alpha)\]where \[r=\sqrt{a^2+b^2}\]and\[\tan{\alpha}=\frac{b}{a}\] In your case, you would identify \[a=\sqrt{3}\]and\[b=1\]so that \[r=2\]and \[\tan{\alpha}=\frac{1}{\sqrt{3}} \rightarrow \alpha=30^o\]so that\[\cos(\omega{t})+\sqrt{3}\sin(\omega{t})=2\sin(\omega{t}+30^o)\]Now all you have to do is apply what you know of trigonometric functions and amplitude. The sine of *anything* oscillates between +1 and -1, so if sine is multiplied by 2, the maximum and minimum values of 2*sine will be +2 and -2 respectively.

Looking for something else?

Not the answer you are looking for? Search for more explanations.