• anonymous
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
  • anonymous
Scroll down to "The Other Identities" section at the following web site: There you will find these identities for Tan(A+B) and Tan(A-B): tan (A + B) = (tan A + tan B)/(1 - (tan A)(tan B)) tan (A - B) = (tan A - tan B)/(1 + (tan A)(tan B)) From the problem it is assumed that tan(45) is the tangent of 45 degrees, which is 1. Thus tan(45+a)-tan(45-a) -> \[(1+\tan a)/(1-\tan a)-(1-\tan a/(1+\tan a)\] When he above expression is combined and simplified, the result is: \[2 \tan 2a\] Note: If any one can show that final result is invalid, I'm certain that Wolfram Research would be glad to hear from you.

Looking for something else?

Not the answer you are looking for? Search for more explanations.