anonymous
  • anonymous
(4x+3y^2)dx + (2xy)dy =0 by making use of the integrating factor m(x,y)= x^my^n where m,n are two real numbers to be found ? i tried to solve this question i found n=-2 m=-5 but it is wrong it does not satisfy the equation to be exact dif. equation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
can u type the complete question pls?
anonymous
  • anonymous
\[(4x+3y^2)dx+(2xy)dy=0\rightarrow\] \[M(x,y)=4x+3y^2, N(x,y)=2xy\] Now check if they are exact:\[M_{y}=6y, N_{x}=2y\] They are not exact, you have to find an integrating factor: \[\frac{d \mu}{dx}=\frac{M_{y}-N_{x}}{N(x,y)} \mu \rightarrow \frac {d \mu}{dx}=\frac{6y-2y}{2xy} \mu\] \[\frac {d \mu}{dx}=\frac{6y-2y}{2xy} \mu=\frac {4y}{2xy} \mu= \frac{2}{x} \mu\] \[\frac {d \mu}{\mu}=\frac{2dx}{x}\rightarrow \int\limits_{}\frac {d \mu}{\mu}=\int\limits_{}\frac{2dx}{x}\rightarrow \ln(\mu)=2\ln(x)\] \[e^{\ln(\mu)}=e^{\ln(x^2)}\rightarrow \mu=x^2\] This is your integrating factor, multiply your original equation with the integrating factor getting: \[(4x^3+3x^2y^2)dx+(2x^3y)dy=0\] \[M(x,y)=4x^3+3x^2y^2, N(x,y)=2x^3y\] Check if they are exact once again: \[M_{y}=6x^2y, N_{x}=6x^2y \rightarrow Exact\] \[\psi(x,y)=\int\limits_{}2x^3ydy=x^3y^2+h(x)\]\[\psi_{x}=3x^2y^2+h'(x)\rightarrow M(x,y)=\psi_{x}\] \[3x^2y^2+h'(x)=4x^3+3x^2y^2\rightarrow h'(x)=4x^3\] \[\int\limits_{}h'(x)dx=\int\limits_{}4x^3dx \rightarrow h(x)=x^4+c\] \[\psi(x,y)=x^3y^2+x^4\] The solution is given implicitly by: \[x^3y^2+x^4=C\] Thus in your case, the integrating factor is:\[\mu(x,y)=x^my^n=x^2y^0=x^2\rightarrow m=2, n=0\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.