anonymous
  • anonymous
find vertical/horizontal asymptotes local extrema
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
y=f(x)=3/(x-1)^2
amistre64
  • amistre64
vertical asymp is when you factor the denominator, eliminate holes (common terms top and bottom) and whats left makes the bottom=0. top: 3 bottom: (x-1)^2 = (x-1)(x-1) Nothing cancels top to bottom so there are no holes. when x=1; the bottom= 0; so x=1 is a vertical asymp. horizontal asymp is easier to find when top and bottom are not factored, and in this case we get 3/x^2. As x grows very big; this fraction gets closer to 0. The HA is at y=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.