find the area of the region inside the lemniscate r^2 = 2(a^2)(cos2theta) a>0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the area of the region inside the lemniscate r^2 = 2(a^2)(cos2theta) a>0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The element of area for a lemniscate in polar coordinates is given by,\[dA=\frac{1}{2}[r(\theta)]^2d{\theta}\]For your case, the area will be given by,\[A=\int\limits_{{\theta}_1}^{{\theta}_2}\frac{1}{2}(2a^2\cos(2{\theta}))d{\theta}=\left[ \frac{a^2}{2}\sin(2{\theta}) \right]_{{\theta}_1}^{{\theta}_2}\]
what is the theta 1 theta 2?
Your limits - you're integrating from one angle to another.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[A=\frac{a^2}{2}\left( \sin(2{\theta}_2)-\sin(2{\theta}_1) \right)\]
i mean, what is the value of theta 1 and theta 2? I am confused on how to find the limits of integration.
You should be given some information in the question. Usually you're told the angles explicitly. Sometimes you may need to work them out from the geometry of the situation. If the question you've posted is complete, then there's nothing more you can do. This is the formula someone would then use to find a numerical value. Though, like I said, unless you're given the limits, or are asked to find them from other information, what's been posted is as far as you can go.
okay. Thank you very much :D
No probs.

Not the answer you are looking for?

Search for more explanations.

Ask your own question