• anonymous
Find an equation of the tangent line to the curve at the point (1, 1). ln(xe^(x^2)) first I applied the chain rule to get 1/(xe^(x^2)) *d/dx(xe^(x^2)). this is where I get stuck. which exponent do I start with the powers rule on to find this derivative?
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
I'll tell you you're making it harder than you need to. I'll do it using the chain rule and then I'll show the easy way. You need to do the product rule on the part you were stuck on. If y = ln(xe^(x^2)), then \[dy/dx = 1/xe ^{x^2}[1e ^{x^2}+x*e ^{x^2}2x]\] \[dy/dx = e ^{x^2}(1 + 2x^2)/xe ^{x^2}=(1 + 2x^2)/x\] Easy way - use logarithmic transformation: \[y = \ln(xe ^{x^2})=lnx + lne ^{x^2}= \ln x + x^2\] \[dy/dx = 1/x + 2x\]
  • anonymous
thanks I appreciate your help

Looking for something else?

Not the answer you are looking for? Search for more explanations.