Sally
  • Sally
This is the last question I have and need help w/: Given exponential decay rate of 0.9%, how old is an animal bone that has lost 40% of its carbon-14?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Since you started with 100% and after certain time t you loss 40% which means you're left with 60%, so your initial value is 100% and your final value is 60%, your decay rate k=0.9%, convert all these percentages to decimal form: \[N(t)=N_{0}e^{-kt}\rightarrow N(t)=.6, N_{0}=1, k=.009\] \[.6=1*e^{-.009t}\rightarrow .6=e^{-.009t}\rightarrow \ln(.6)=\ln(e^{-.009t})\] \[\ln(.6)=(-.009t)\ln(e)\rightarrow \ln(e)=1, so \rightarrow \ln(.6)=-.009t\] \[\frac{\ln(.6)}{-.009}=t\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.