A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 5 years ago
Please check and correct my work.
Logarithm solve for (x)
ln(x3)+ln(x+4)=1
My Steps:
Law 1: ln[(x3)(x+4)]=1
e^1=x^2+x12...?
anonymous
 5 years ago
Please check and correct my work. Logarithm solve for (x) ln(x3)+ln(x+4)=1 My Steps: Law 1: ln[(x3)(x+4)]=1 e^1=x^2+x12...?

This Question is Closed

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0couldn't you simply leave it in the expanded form and e both sides it would give you x=e1/2

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0if you do it the way you were doing it you have to use the quadratic formula your steps are right

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Okay now im a bit confused. could you show me how

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0well e^ln(x3)+e^ln(x+4)=e^1 which is x3+x+4=e, 2x+1=e solve for x

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0don't listen to calc2student he doesn't know what he is talking about, that is not a rule of logs aka e^(ln(x3)+ln(x+4) =\ x3+x+4

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0repeat you did it correct do not listen to calc2 student, x=(e1)/2=0.859.... your method the right one x=4.37, +3.37

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0please this is the second question you have answered incorrectly calc2student stop responding to questions if you don't know how to help

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0if u need more help, i can explain

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0sigh.... (b+(b^24(a)(c))^1/2)/2 = (1+(1(4*14.72)^1/2)/2 = (1+7.74)/2 = 4.37 or +3.37 feel free to check my work if you need to oh btw x^2+x122.71; a=1, b=1, c=14.71

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0well i put it in and it says its wrong...

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0can u make sure is that log or ln ?

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0if it is log my answer is correct

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0ln(x3)+ln(x+4)=1 ...so its ln

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0it should just be 3.37 b/c you can't take the the natural log of a negative number, check wolfram alpha it concurs with me..... if you have never used www.wolframalpha.com I highly suggest you try it :)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0can u help me with this one?

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0solve the equation. Round to nearest 4 decimal place if necessary (x^2)(5^x)(5^x)=0

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0(x^2)(5^x)(5^x)=0>5^x(x^21)=0>x^21=0>x=+(1)^(1/2)>x=+1,1

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0(x^2)(10^x)(x)(10^x)=6(10^x)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0and thanks for the steps, greatly appreciated and needed for me to study

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0same factor out the 10^x> x^2x=6>x^2x6>x=3,2

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0i have this problem. but it has this weird sign after. i posted it on google documents so you could see it. I thought maybe it would affect the question is some way....heres the link: https://docs.google.com/document/d/1C3mBIu2pp2Q1LUPo4IABl6XFxG56PxOrmH6qFAnxJg/edit?hl=en&authkey=CIKk49gI ...if the link works

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0now your pushing my algebra skillz to the limit..... so it maybe 1/2 but I'm not sure sorry

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0or it could be 8.... lol sorry really I don't really know this one

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0lol.... no for real it could be 2.... this time I think its right :)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0ln(x3)+ln(x+4)=1 lnx / ln 3 + lnx * ln4 = 1 ln(x) [1/ln3 + ln4]=1 ln(x)[1+ln3*ln4]=ln3 ln(x)= ln3/(1+ln(3)*ln(4) = ln3(1+ln7)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0last line is = ln3 / (1+ln7)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0x should be more than 3, because there is ln(x3), ln will not take negative value

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0uuggghhh.... yeah we've deciphered that he posted a link to another problem.... and btw you were definitely wrong on your last response to that problem.... in fact I have no idea what you were doing @vijay

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0vijay, you have your log properties mixed up. ln(a)  ln(b) = ln(a / b), not the other way around. Donovan, your original post was all correct. You should have: (x  3)(x + 4) = e x^2 + x  12 = e x^2 + x = e + 12 x^2 + x + 1/4 = e + 12 + 1/4 (x + 1/2)^2 = e + 49/4 \[(x + 1/2)^2=(4e+49)/4\] \[x + 1/2 = \pm \sqrt{4e+49}/2\] \[x = (1\pm \sqrt{4e+49})/2\] Only the positive version is going to work, which is x = 3.369. The negative version results in a negative x which won't work.

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0yeah I posted that like days ago @branlegr check out the link he posted and tell me what you get

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0@branlegr I'm a huge fan of wolfram as well ;)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Haha, I just saw it. Got kinda mixed up in all this backandforth of incorrect methods.

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0And that problem at that link is a b****.

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0yea I'm thinking 2^(1/log3(x))=2^2>1/log3(x)=2>1=2log3(x)>1/2=log3(x)>x^3=1/2>x=(1/2)^(1/3)=~0.7937.... I really do think that one is correct but I'm not sure... oh well

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Imma working on it...

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Answer is 1/sqrt(3). \[2^{1/\log_{3}x }=1/4\] \[\ln 2^{1/\log_{3}x }=\ln 1/4\] \[(1/\log_{3}x)\ln 2=\ln 1/4 \] \[1/\log_{3} x=\ln(1/4)/\ln 2\] \[1 /\log_{3}x=\log_{2}1/4 \] \[1/\log_{3} x=2\] \[\log_{3} x=1/2\] \[3 ^{1/2}=1/\sqrt{3}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0nice I was totally wrong.... confused the last rule... bs lol back to organic II have a good night man sorry I couldn't help more :(
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.