a page of print is to contain24in^2 of printed region,a margin of 1and1/2 at the bottom,and a margin of 1in.at the sides..what are the dimensions of the smallest page that will fill these requirements?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

a page of print is to contain24in^2 of printed region,a margin of 1and1/2 at the bottom,and a margin of 1in.at the sides..what are the dimensions of the smallest page that will fill these requirements?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

http://tutorial.math.lamar.edu/Classes/CalcI/Optimization.aspx See example 6
A great reference. Thanks godnod. Let me see if I can put it together and held ronadelossantos. Let y equal one dimension of the printed material. Let x = the other dimension of the printed material. It is stated that the printed material is 24 sq. inches. Thus: xy=24. We will use that information later. One dimension of the paper (including the margins) will be x+1 and the other dimension is y+2. Returning to the xy=24 we can say y=24/x. We now have enough information to solve.
\[A=(x+1)((x/24)+2)\] This becomes: \[24x/x+2x+24/x+2\] \[24+2x+24/x+2\] \[2x+24/x+26=A\] \[2x+24x ^{-1}+26=Area\] Differntiating and set zero for min/max

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

A' = 0\[A'=2-24x ^{-2}=0\]
\[-24=-2x ^{2}\] \[x ^{2}=12\] \[x=2\sqrt{3}\] one dimension solve for y y=24/x \[y=24/(2\sqrt{3}=12/\sqrt{3}=4\sqrt{3}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question