anonymous
  • anonymous
simplify: the little 3 over the square root of 32x^5y^9
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
That's called a cube root. It's the same as raising the quantity to the power of 1/3. (A square root is to the power of 1/2) 32 = 2^5 32^(1/3) = 2^(5/3) (x^5)^(1/3) = x^(5/3) (y^9)^(1/3) = y^3 2^(5/3) * x^(5/3) * y^3 is the most simplified answer
anonymous
  • anonymous
is that how it is written in radical notation?
anonymous
  • anonymous
I'm not using radicals. I'm raising them to exponents to forgo any problems of communicating how to write that as a radical. Do you need it in radical notation?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes that is where i get confused.
anonymous
  • anonymous
... is there a way to solve for radical notation?
anonymous
  • anonymous
Sorry about not getting back to you. given the final answer of: 2^(5/3) * x^(5/3) * y^3 You can write the radical sign with the 3, denoting a cube root, with 32*x^5*y^9 within it, and that would be in radical form. However, you can further simplify it still while maintaining radical form. Such as: 2^(5/3) pulled out of the radical. Also, y^(9/3) is equal to y^3 So you have y^3 * 2^(5/3) * cube root(x^5). Or you can have y^3 * cuberoot(32*x^5). Choose whichever you think is most applicable in your case.
anonymous
  • anonymous
THANKS! honestly your descriptions are helping me out!!
anonymous
  • anonymous
You're welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.