Use implicit differentiation to find d^2y/dx^2 for 4x^5+11y=100. I got the first step as 20x^4+11dy/dx=0. Then what is the next step?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use implicit differentiation to find d^2y/dx^2 for 4x^5+11y=100. I got the first step as 20x^4+11dy/dx=0. Then what is the next step?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[{d^{2y}}\over{dx^{2}}\] ?????? Anyways, assuming that \[20x^4+11{{dy}\over{dx}}\] is your first derivative, then you can go about it like: \[11{{dy}\over{dx}}=-20x^4\] \[{{dy}\over{dx}}=-{{20x^4}\over{11}}\]
The problem should have been (d^2)y/dx^2. I don't know if that made a difference in how you solved this problem.
So they way it is written do you take the second derivative

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ah yes, I believe that is what they want.

Not the answer you are looking for?

Search for more explanations.

Ask your own question