Determine whether or not the given vectors in R^n form a basis for R^n: v1=(0,7,-3) v2=(0,5,4) v3=(0,5,10)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine whether or not the given vectors in R^n form a basis for R^n: v1=(0,7,-3) v2=(0,5,4) v3=(0,5,10)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

No they don't. I assume you meant that this "n" number of vectors is supposed to form a basis for R^n. n=3 and these vectors do not span R^3 because you can't define any vector in R^3 using these vectors. Any vector of the form (where n is any number) could not be written as a sum of these 3 given vectors.
because none of these vectors has a component in the "x-direction" or "i direction" (when using a standard xyz or ijk coordinate system.
Thanks a lot. I've been having a lot of trouble with this unit on vector spaces. Linear algebra is really a tough subject in my opinion.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah it is kind of abstract sometimes

Not the answer you are looking for?

Search for more explanations.

Ask your own question