anonymous
  • anonymous
solve the differential equation: dy/dx + (y^3 + 4e^xy)/(2e^x+3y^2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
can use bernoulli's method, linear, separable, homogenity test, etc.
amistre64
  • amistre64
dy/dx + (y^3 +4e^xy)/(2e^x +3y^2) = 0 dy = -(y^3 +4e^xy)/(2e^x +3y^2) dx dy = -y(y^2 +4e^x)/(2e^x +3y^2) dx dy/-y(y^2 +4e^x) = dx/(2e^x +3y^2) Oww its giving me a headache :) Does that help any?
anonymous
  • anonymous
yes but dx can only have functions of x with it and the same for y so is it not separable?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
It might be separable, but I cant see it yet :)
anonymous
  • anonymous
the e^x is the problem
anonymous
  • anonymous
i have an idea multiply all of them then take integral :)
anonymous
  • anonymous
this is y^3 +4e^xy =u du/dy=2e^x+3y^2 may be this
amistre64
  • amistre64
This ones outta my league for now....

Looking for something else?

Not the answer you are looking for? Search for more explanations.