I need help in finding the derivative of F(X)=(1+2x+x^3)^1/4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I need help in finding the derivative of F(X)=(1+2x+x^3)^1/4

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

(3 x^2+2)/4
Possible derivation: \[d/dx(x^3+2 x+1)^{1/4}\] Use the chain rule, \[d/dx(x^3+2 x+1)^{1/4}=(du ^{1/4})/du \times du/dx\] Where: \[u = x^3+2 x+1\] and \[( du ^{1/4})/du =1/(4u ^{3/4})\] \[=(d/dx(x ^{3}+2x+1))/(4 (x^3+2 x+1)^{3/4}\] Differentiate the sum term by term and factor out constants: \[=(d/dx(x^3)+2(d/dx(x))+d/dx(1))/(4 (x^3+2 x+1)^{3/4}\] The derivative of 1 is zero: \[=(d/dx(x^3)+2 (d/dx(x))+0)/(4 (x^3+2 x+1)^{3/4}\] The derivative of x is 1: \[=(d/dx(x^3)+2 1)/(4 (x^3+2 x+1)^{3/4})\] The derivative of x^3 is 3x^2: \[=(3 x^2+2)/(4 (x^3+2 x+1)^{3/4}\]
Pasi is correct. My mistake. Posted the derivative of \[( (x^3+2x+1)^1 )/4\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thanks you
You are welcome
I believe someone today, 19May2011, had an issue with the derivation of the derivative of the expression in the problem statement. I was the first with a posting of the proposed derivative of: (1 + 2 x + x^3)^1/4 Mathematica, the program I use for the calculations on this site, interpreted the expression above, even though there was a circumflex accent symbol, indicating exponentiation, as follows:\[\frac{1}{4} \left(1+2 x+x^3\right) \] the derivative of which is:\[\frac{1}{4} \left(2+3 x^2\right) \]Had there been parenthesis flanking the exponent of 1/4 then Mathematica would have presented \[\left(1+2 x+x^3\right)^{1/4} \]as the problem expression, the same expression Pasi used to find the correct derivative,\[\frac{3 x^2+2}{4 \left(x^3+2 x+1\right)^{3/4}} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question