• anonymous
A particular factory manufactures (n) units per month.Each unit sells for (c) dollars.The number of units sold varies with the selling price according to ; n=600-10c and the monthly operating cost of the factory is given by; C=$4000+12n The monthly profit; P=nc-C is a maximum when the unit selling price is ???
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
You have n and C given to you in terms of c, and you're looking for that particular c that will maximize the function, P. I don't know what level calculus you're doing, but you can do this a couple of ways. Since you need to maximize P(c), one thing you can do is sub. each expression for n and C into P in terms of c and take the derivative. So,\[P=(600-10c)c-(4000+12(600-10c))\] \[=3800+120c-100c^2\] Then \[P'(c)=120-200c \rightarrow c=\frac{120}{200}=\frac{3}{5}=$0.60\]Please check everything, I'm half asleep.

Looking for something else?

Not the answer you are looking for? Search for more explanations.