A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing
 3 years ago
A man 5'8" wishes to find the height of an oak tree in his front yard.He walks along the shadow of the tree untill his head is in a position where the end of his shadow exactly overlap the end ofthe treetop's shadow.He is now 11'3" from the foot of the tree an 8'6" from the end of the shadows.How tall is the oak tree?
 3 years ago
A man 5'8" wishes to find the height of an oak tree in his front yard.He walks along the shadow of the tree untill his head is in a position where the end of his shadow exactly overlap the end ofthe treetop's shadow.He is now 11'3" from the foot of the tree an 8'6" from the end of the shadows.How tall is the oak tree?

This Question is Closed

sam_unleashed
 3 years ago
Best ResponseYou've already chosen the best response.0if you take height of man as opposite side of an angle and length of his shadow as adjacent side of that angle then tan(x)=5'8"/8'6"=68"/102" same in the case of tree . let h be height of tree. tan(x)=h/(11'3"+8'6")=68/102. h/237=68/102, h=158"=13'2"
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.