For a geometric sequence, a1 = -2 r=2 and an= -64. Find n and Sn The n's are subscript, but I don't know how to type them like that on here.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

For a geometric sequence, a1 = -2 r=2 and an= -64. Find n and Sn The n's are subscript, but I don't know how to type them like that on here.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

A geometric sequence is much like a geometric series in that the formula is as follows: \[a_{n}=ar^{n}\] when n starts at 0 or\[a_{n}=ar^{n-1}\] when n starts at 1. Since you are given \[a_{1} = -2\] Then we will use the \[a_{n}=ar^{n-1}\]formula because that starts at n=1, so n can be deduced by plugging the values given in the formula, i.e.\[a_{1}=-2=ar^{1-1}=ar^{0}=a\]\[a_{n}=-64=-2*r^{n-1}\]\[-64/-2=2^{n-1}=2^{n}2^{-1}\]\[64/2=2^{n}/2\]\[64=2^{n}\]\[\log_{2}(64)=n=6\]So this saya that the last value in the sequence is -64 and that term is n=6. Sn is in the next post
From above, \[s_{n}=ar^{1-1}+ar^{2-1}+ar^{3-1}+...+ar^{n-1}\] \[s_{n}=a+ar+ar^{2}+...+ar^{n-1}\] Now if we multiply r on both sides of this equation, we get \[rs_{n}=ar+ar^{2}+ar^{3}+...+ar^{n-1}r\] The last term is \[ar^{n-1}r=ar^{n-1+1}=ar^{n}\] Subtract rSn from Sn \[s_{n}-rs_{n}=a+ar+ar^{2}+...+ar^{n-1} -\] \[ (ar+ar^{2}+ar^{3}+...+ar^{n})\] Notice that all the terms cancel each other except the first and the last. \[s_{n}-rs_{n}=a-ar^{n}\]\[s_{n}(1-r)=a(1-r^{n})\]\[s_{n}=a(1-r^{n})/(1-r)=-2(1-2^{n})/(-1)=2(1-2^{n})\]Knowing that a1=a

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question