use direct comparison test to prove Σ(k^(4/3)/(8k^2+5k+1))is divergent

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

use direct comparison test to prove Σ(k^(4/3)/(8k^2+5k+1))is divergent

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

use \[1/k ^{2/3}\]
I did But it is higher than the original equation
you cant use limit comparison test?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The book said Use comparison test But there is another section saying "Limit comparison test"
limit comparison test is easier because it does not have to be smaller
can i make it to k^(4/3)/(8k^2+8k^2+8k^2) just to make it smaller?
so it will become 1/24k^(2/3) and it will pass the p test and smaller
you have to use a function that you know diverges by some rule in this case divergent p series

Not the answer you are looking for?

Search for more explanations.

Ask your own question