Does (lnk)/(k^3), where as k starts at one and continues on to infinity, converge?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Does (lnk)/(k^3), where as k starts at one and continues on to infinity, converge?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Are you asking if the SUM from k=1 to infinity of lnk/k^3 converges, or if the summand itself does?
Use the integral test and set the integrand to ln(x)/x^3. Integrate it out to get \[-\ln{x}/2{x^2}|^c_1-1/4[1/c^2-1]\]where the limits of integration are 1 to c. Next take the limit as c goes to infinity, and use L'Hopital's Rule on -ln(c)/(2c^2) as c goes to infinity. In the end you should end up with 1/4. Since the integral converges, so does the sum.
You have to use the appropriate test to do this. There's a lot of choices, i.e. p-test, divergence test, ratio test, root test, comparison test, etc., but the best bet is the integral test which can only be done on a continuous, positive, decreasing function in the interval [k,infinity) which this series is. So, here we go: 1) First we have to establish whether \[\ln(k)/k^{3}\]is positive and decreases eventually and to do this, we check the derivative: \[d/dx(\ln(x)/x^{3})=-3x^{-4}\ln(x)+x^{-3}(1/x)=(-3\ln(x)+1)/x^{4}\]so,\[f'(x)=(-3\ln(x)+1)/x^{4}\]has a critical point at \[x=e^{1/3}\]and if you pick a couple points you'll notice that the derivative is positive (increasing) from [1,e^{1/3}] and negative (decreasing) from [e^{1/3},infinity) This confirms that we can use the integral test. 2) Construct the improper integral\[\int\limits_{1}^{\infty}x^{-3}\ln(x)=x^{-3}\ln(x)-(x^{-2}/4)\]This is done using integration by parts and selecting\[u=\ln(x), dv=x^{-3}dx\] Now, apply the integration limits, replacing infinity with t: \[\int\limits\limits_{1}^{t}x^{-3}\ln(x)=(\ln(t)/t^{3}-1/4t^{2})-(\ln(1)/1-1/4)\] 3) Now take the lim t-> infinity: \[\lim_{t \rightarrow \infty}(\ln(t)/t^{3}-1/4t^{2})-(\ln(1)/1-1/4)\]\[1/3t^{3}-1/4t^{2}-0+1/4=1/4\]using L'Hospitals rule on the first term. 4)Since the improper integral of the series converges to 1/4 so does the series:\[\sum_{k=1}^{\infty}\ln(k)/k^{3}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question