can anyone help me find the analytical soln to dQ/dt = K(A-Q)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

can anyone help me find the analytical soln to dQ/dt = K(A-Q)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

This is a separable ordinary differential equation. \[\frac{dQ}{dt}=K(A-Q) \rightarrow \frac{dQ}{A-Q}=K{dt}\]Then integrating,\[\int\limits_{}{}\frac{dQ}{A-Q}=\int\limits_{}{}Kdt \rightarrow -\ln{(A-Q)}=Kt+C\]where C is a constant. Then,\[A-Q=e^{-Kt}e^C=Be^{-Kt}\]where B is just the constant e^C. So,\[Q=A-Be^{-Kt}\]
Thank you very much. this make it alot clearer. :)
No worries. Feel free to 'fan' me =)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

No problems, but how do i star you? sorry im new to this.
I think there should be something like, "become a fan" next to my name...and I think you just saw it 'cause my 20 turned to 21.
Done. thanks again
No probs.

Not the answer you are looking for?

Search for more explanations.

Ask your own question