anonymous
  • anonymous
by variation of parameters y''+y=sec(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
So general solution= yc+yp. Yc is the solution to the homogenous DE which is fairly simple to solve. yc= c1cost+c2sint Now, to get Yp, you use this: yp= v1y1+v2y2 where y1=cost and y2=sint which means you need to solve v1 and v2. So to solve for those, you use these two equations: v1'y1+v2'y2=0 and v1'y1'+v2'y2'=g(t) where g(t) in this case is secx. Then you need to eliminate a variable to solve this system and integrate v1' to find v1. Then solve for v2' and integrate that to solve for v2. Then solve for yp and combine with yc.

Looking for something else?

Not the answer you are looking for? Search for more explanations.