• anonymous
an observer stands 200 meters from the launch site of a hot-air balloon. balloon rises 4m/sec at a constant rate. how fast is the angle of elevation of the balloon increasing 30sec after the launch?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • amistre64
Now heres a problem I can do :) think of it like a triangle problem: the base(x) is 200 m and the height(y) is increasing at a constant rate. And the angle(a) is changing at a rate of tan(a) The change in "y" with respect to time "t" is 4m per sec. So lets solve tan(a) = y/200 with repect to time and see what we get. tan(a) = y/200 (d/dt)(tan(a)) = (d/dt)(y/200) (da/dt) (sec^2(a)) = (dy/dt) (1/200) (da/dt) = (4)/(200 sec^2(a)) = 1/50sec^2(a) What does sec(a) equal at 30 sec? y=120m x=200 r=40sqrt(34) sec(a) = r/x = 40sqrt(35)/200 = sqrt(34)/5 (sqrt(34)/5)^2 = 34/25 (da/dt) = 1/(50(34/25)) (da/dt) = 1/(2(34)) (da/dt) = 1/68 radians per sec. But you might want to double check the work :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.