anonymous
  • anonymous
A trough is 14 ft long and its ends have the shape of isosceles triangles that are 2 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 8 ft3/min, how fast is the water level rising when the water is 9 inches deep?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hello
anonymous
  • anonymous
let x be length of water filled from bottem. so length of water surface at cross section =2x(using similar triangle) now volume of water filled V=(1/2)(x)(2x).14=14x^2 dV/dx=28x (dV/dt).(dt/dx)=28x dt/dx=28x.(dt/dV) now put the values from question dt/dx=28(9/12).1/8 dx/dt=24/63. ans .... water level increases at the rate of 24/63 ft /min
anonymous
  • anonymous
Thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.