How do you find the integral of (2x^3+5x+1)e^(2x) dx ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How do you find the integral of (2x^3+5x+1)e^(2x) dx ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

expand the equation first [(2x^3)e^(2x)+5x*e^(2x)+e^(2x)] dx \[\rightarrow \int\limits_{}^{}(2x^3)e ^{2x} dx +\int\limits_{}^{}5x \times e ^{2x} dx + \int\limits_{}^{} e ^{2x}dx\] to the integration by part seperately
integration by parts three times on the first integral, integrate by parts once on the second integral, and use u substitution on the third integral, then add them all together
first integral, Integrate by parts 3 times: \[\int\limits\limits 2x^3e^{2x}dx \rightarrow\] \[f(x)=e^{2x}, F(x)=\frac{e^{2x}}{2}, g(x)=x^3, g'(x)=3x^2\] \[2 ( \frac{x^3e^{2x}}{2}- \frac{3}{2}\int\limits\limits\limits x^2e^{2x}dx)\rightarrow \]\[x^3e^{2x}-3 \int\limits\limits x^2e^{2x}dx\] \[f(x)=e^{2x}, F(x)=\frac{e^{2x}}{2}, g(x)=x^2, g'(x)=2x\] \[x^3e^{2x}-3( \frac{x^2e^{2x}}{2}- \int\limits\limits\limits xe^{2x}dx)\rightarrow \]\[x^3e^{2x}-\frac{3}{2}x^2e^{2x}+3 \int\limits\limits xe^{2x}dx\] \[f(x)=e^{2x}, F(x)=\frac{e^{2x}}{2}, g(x)= x, g'(x)=1\] \[x^3e^{2x}-\frac{3}{2}x^2e^{2x}+3( \frac{xe^{2x}}{2}-\frac{1}{2} \int\limits\limits\limits e^{2x}dx) \rightarrow\] \[x^3e^{2x}-\frac{3}{2}x^2e^{2x}+\frac{3}{2}xe^{2x}-\frac{3}{2}e^{2x}+C\] second integral, integrate by parts once: \[\int\limits 5xe^{2x}dx \rightarrow\] \[f(x)=e^{2x}, F(x)=\frac{e^{2x}}{2}, g(x)=x, g'(x)=1\] \[5( \frac{xe^{2x}}{2}- \frac{1}{2} \int\limits e^{2x}dx)\rightarrow \frac{5}{2}xe^{2x}- \frac{5}{2}e^{2x}+C\] third integral, use u substitution: \[\int\limits e^{2x}dx \rightarrow \frac{1}{2}e^{2x} +C\] Your final answer should be: \[x^3e^{2x}-\frac{3}{2}x^2e^{2x}+\frac{3}{2}xe^{2x}-\frac{3}{2}e^{2x}+\frac{5}{2}xe^{2x}\] \[- \frac{5}{2}e^{2x}+\frac{1}{2}e^{2x}+C\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The final answer can be simplified, which I'll leave up to you
THANKS!!
no problem

Not the answer you are looking for?

Search for more explanations.

Ask your own question