anonymous
  • anonymous
f(t)=t^4-12t^3+16t^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
find the critical numbers
amistre64
  • amistre64
oh goody.... the critical numbers are our max min and inflection points. So off to derivatives we go.... the first derivative tells us where the bends are. and the second derivative tells us what those bends are doing.
amistre64
  • amistre64
y' = 4t^3 -36t^2 +32t make that equal to 0 to find the bends.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
y'' = 12t^2 -72t +32 when this is negative we have a maximum, where it is positive we have a minimum (might have those backwards) and where it is 0 are inflection points
amistre64
  • amistre64
y'' = 4(3t^2 -18t +8) [18 +-sqrt((18^2) - 4(8)(3))] / 2(3) 3 +-sqrt(324 - 96)/6 3 (+-) 2sqrt(57)/3 2 inflections: x=(3 -2sqrt(57)/3) and (3 +2sqrt(57)/3) theres the two critical points of inflection... whew this is exhausting :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.