anonymous
  • anonymous
a small school has 100 students who occupy three classrooms. A,B, and C. After the first period of the school day, half the students in room A move to room B, one-fifth of the students in room B move to room C, and one-third of the students in room C move to room A. Nevertheless, the total number of students in each room is the same for both periods. How many students occupy each room. Must be put in system and solves on TI 84 calculator.
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
must be what????
anonymous
  • anonymous
There's infinite solutions to this problem. Set up the problem like this: (1/2)A = (1/5)B = (1/3)C So, B = (5/2)A C = (3/2)A The value of A must be multiples of the least common multiple of 2, 3, and 5.
anonymous
  • anonymous
Using a Matrix Inverse

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I'm not sure how to help you with the TI 84 part, I'm not familiar with the function involving solving equations. However, I can help you think about the problem to "get the ball rolling". Your biggest hint is that the total number of students in each room is the same for both periods. That means the number of students leaving a particular room must be equal to the number entering the room. So we have: A/2=C/3 B/5=A/2 C/3=B/5 Now, it looks like we have three equations and three unknowns, but really these are all equivalent. We need to add in this fact: A+B+C=100 Let's put B in terms of C and A... B=100-(A+C) Then we can use our comparison equations from above with this new substitution. (100-(A+C))/5=A/2=C/3 @dcp, there are not infinite solutions because we have the fact that there are 100 students total. Furthermore you cannot have fractions of a student.
anonymous
  • anonymous
Ah, 100 students total. Yep, missed that part. :)
anonymous
  • anonymous
No worries... I was thinking infinite solutions at first as well
anonymous
  • anonymous
ok my directions say to write the systems of equations ans set up the matrix equation AX=B and solve it.
anonymous
  • anonymous
its supposed to be in a 4x4 matrix

Looking for something else?

Not the answer you are looking for? Search for more explanations.