anonymous
  • anonymous
How do I complete this integration? ∫dx/(√((x^2 )-4x))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
This is messy to do online. You will have to make a couple of substitutions after completing the square of the radicand. So,\[x^2-4x=x^2-4x+(-4/2)^2-(-4/2)^2=(x-2)^2-2^2\]So\[\sqrt{x^2-4x}=\sqrt{2^2[(\frac{x-2}{2})^2-1}]=2\sqrt{(\frac{x-2}{2})^2-1}\]Make the substitution,\[u=\frac{x-2}{2}\]Then,\[2du=dx\]and the integral becomes,\[\frac{1}{2}\int\limits_{}{}\frac{2du}{\sqrt{u^2-1}}=\int\limits_{}{}\frac{du}{\sqrt{u^2-1}}\]Make another substitution,\[u=\cosh(\theta)\]Then\[du=\sinh(\theta)d{\theta}\]and the integral becomes,
anonymous
  • anonymous
\[\int\limits_{}{}\frac{\sinh(\theta)}{\sqrt{\cosh^2(\theta)-1}}d{\theta}=\int\limits_{}{}\frac{\sinh(\theta)}{\sinh(\theta)}d{\theta}=\theta + c\]Then sub. everything back in...\[\theta+c=\cosh^{-1}(u)+c=\cosh^{-1}(\frac{x-2}{2})+c\]
anonymous
  • anonymous
You can use the fact that \[\cosh^{-1}(y)=\ln(y+\sqrt{y^2-1})\]and sub. \[y \rightarrow \frac{x-2}{2}\] and simplify to get something more 'standard'.

Looking for something else?

Not the answer you are looking for? Search for more explanations.