The perimeter of a rectangle is 110m , and the area of the rectangle is 54m^2 . Find the dimensions of the rectangle.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The perimeter of a rectangle is 110m , and the area of the rectangle is 54m^2 . Find the dimensions of the rectangle.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Any ideas?
You have two equations - one for area and one for perimeter. Then, if your sides are: a = length b = width \[P=2a+2b\]and\[A=ab\]From your numbers, we get\[110=2a+2b\]and\[54=ab\]Choosing any one of the last two equations, we can solve for one of the variables and sub. it into the remaining equation, so\[54=ab \rightarrow b=\frac{54}{a}\]Substituting this into the perimeter equation,\[110=2a+2\frac{54}{a} \rightarrow 55=a+\frac{54}{a} \rightarrow 55a=a^2+54\]This is quadratic in a.\[a^2-55a+54=0\rightarrow a=\frac{-(-55){\pm}\sqrt{(-55)^2-4(1)(54)}}{2(1)}\]i.e.\[a=1,54\] then \[b=54,1\] respectively.
So your length/width combinations are: (a,b) = (1,54) or (54,1).

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question