anonymous
  • anonymous
The perimeter of a rectangle is 110m , and the area of the rectangle is 54m^2 . Find the dimensions of the rectangle.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Any ideas?
anonymous
  • anonymous
You have two equations - one for area and one for perimeter. Then, if your sides are: a = length b = width \[P=2a+2b\]and\[A=ab\]From your numbers, we get\[110=2a+2b\]and\[54=ab\]Choosing any one of the last two equations, we can solve for one of the variables and sub. it into the remaining equation, so\[54=ab \rightarrow b=\frac{54}{a}\]Substituting this into the perimeter equation,\[110=2a+2\frac{54}{a} \rightarrow 55=a+\frac{54}{a} \rightarrow 55a=a^2+54\]This is quadratic in a.\[a^2-55a+54=0\rightarrow a=\frac{-(-55){\pm}\sqrt{(-55)^2-4(1)(54)}}{2(1)}\]i.e.\[a=1,54\] then \[b=54,1\] respectively.
anonymous
  • anonymous
So your length/width combinations are: (a,b) = (1,54) or (54,1).

Looking for something else?

Not the answer you are looking for? Search for more explanations.