anonymous
  • anonymous
how is (1+(2^n))/(3^n) rewritten into the standard geometric series notation? ar^(n-1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Hi pgarcia164, I was flicking through old questions and saw this unanswered. You need to put your summand in the following form:\[\frac{1+2^n}{3^n}=\frac{1}{3^n}+\frac{2^n}{3^n}=\frac{1}{3^n}+\left( \frac{2}{3} \right)^n\]Then\[\sum_{n=0}^{\infty}\frac{1+2^n}{3^n}=\sum_{n=0}^{\infty}\left( \frac{1}{3^n}+\left( \frac{2}{3} \right)^n \right)=\sum_{n=0}^{\infty}\frac{1}{3^n}+\sum_{n=0}^{\infty}\left( \frac{2}{3} \right)^n\]You can break the sum up in the last part because the series converges uniformly. Now you have two geometric series - the first has first term a=1 and common ratio r=1/3, while the second has first term a=1 and common ratio 2/3. The formula for the sum of geometric series then gives for each,\[\frac{1}{1-1/3}+\frac{1}{1-2/3}=\frac{9}{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.