Solve the ODE y''''-3y'''+4''=2(x-1)e^x

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve the ODE y''''-3y'''+4''=2(x-1)e^x

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

http://www.wolframalpha.com/input/?i=y%27%27%27%27-3y%27%27%27%2B4y%27%27+%3D+2%28x-1%29e^x
lol ya ok... could've done that... need the work
what is 4"

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This is a massive question to do online. I'll do as much as I can...
Make the substitution \[v=y'\]Then your equation becomes\[v''-3v'+4v=e^x(2x-2)\]
You need to solve the homogeneous equation first, then find the particular solution.
\[v''-3v'+4v=0\]has characteristic equation (assuming a solution \[v=e^{{\lambda}x}\])\[{\lambda}^2-3{\lambda}+4=0\rightarrow {\lambda}=\frac{3}{2}{\pm}\frac{\sqrt{7}}{2}i\]which yields a homogeneous solution,\[v=c_1e^{3x/2}\cos(\frac{\sqrt{7}x}{2})+c_2e^{3x/2}\sin(\frac{\sqrt{7}x}{2})\]
The particular solution can be found by attempting a trial solution based on the RHS of the DE, so attempt\[v=e^x(ax+b)\]When you substitute this into the DE, you end up with the following\[2ax+(2b-a)=2x-2\](the exponentials cancel). This is true only for a=1 and b=-1/2, so the particular solution is\[v=e^x(x-\frac{1}{2})\]
Your total solution is therefore,
\[v=c_1e^{3x/2}\cos(\frac{\sqrt{7}}{2}x)+c_2e^{3x/2}\sin(\frac{\sqrt{7}}{2}x)+e^x(x-\frac{1}{2})\]
Now, since \[v=\frac{dy}{dx}\] you have to integrate v to find y...this I shall leave to you...if you need further assistance, let me know. Good luck.

Not the answer you are looking for?

Search for more explanations.

Ask your own question