anonymous
  • anonymous
∫[0,π,e^(3t)sin(3t),]dt=
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
have u try using substitution?
anonymous
  • anonymous
You should use integration by parts:\[\int\limits_{}{}u.dv=uv-\int\limits_{}{}v.du\]and you'll have to use it a couple of times. Set the following:\[u=e^{3t}\]and\[dv=\sin(3t)dt\]then \[du=3e^{3t}dt\]and\[v=-\frac{1}{3}\cos(3t)\]Then your integral becomes\[\int\limits_{}{}e^{3t}\sin(3t)dt=-\frac{1}{3}e^{3t}\cos(3t)+\int\limits_{}{}\cos(3t)e^{3t}dt\]
anonymous
  • anonymous
Now you have to repeat the process on the final integral. Set u=e^(3t) and dv=cos(3t)dt and repeat. You should get\[\int\limits_{}{}e^{3t}\cos(3t)dt=\frac{1}{3}e^{3t}\sin(3t)-\int\limits_{}{}e^{3t}\sin(3t)dt\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Substitute this into the equation before it, so that\[\int\limits_{}{}e^{3t}\sin(3t)dt=-\frac{1}{3}e^{3t}\cos(3t)\]\[+\left[ \frac{1}{3}e^{3t}\sin(3t)-\int\limits_{}{}e^{3t}\sin(3t)dt \right]\]
anonymous
  • anonymous
Add \[\int\limits_{}{}e^{3t}\sin(3t)dt\]to both sides. Then\[2\int\limits_{}{}e^{3t}\sin(3t)dt=\frac{1}{3}e^{3t}\left( \sin(3t)-\cos(3t) \right)\]
anonymous
  • anonymous
Divide both sides by 2 to get your integral:\[\int\limits_{}{}e^{3t}\sin(3t)=\frac{1}{6}e^{3t}\left( \sin(3t)-\cos(3t) \right)+C\]
anonymous
  • anonymous
There is a method by which you can pump out IBP problems extremely quickly, but it's hard to explain online...so I stuck to the 'traditional' route.

Looking for something else?

Not the answer you are looking for? Search for more explanations.