anonymous
  • anonymous
If the rotation matrix in the rotation equation is matrix[x_y]=matrix[-√(2)/2,-√(2)/2,_√(2)/2,-√(2)/2,]*matrix[x'_y']. What angle of rotation is being used?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I just wrote a huge piece and this site kiboshed what I wrote. Did you get anything for this question?
anonymous
  • anonymous
Basically, identify the entries in your matrix with each of the trig. functions that describe a rotation matrix in two dimensions. You should have then,\[\sin \theta = -\frac{1}{\sqrt{2}}\]and \[\cos \theta =-\frac{1}{\sqrt{2}}\]
anonymous
  • anonymous
In one rotation, \[\sin \theta = -\frac{1}{\sqrt{2}} \rightarrow \theta =225^o, 315^o\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\cos \theta = -\frac{1}{\sqrt{2}} \rightarrow \theta = 135^o, 225^o\]
anonymous
  • anonymous
The only angle BOTH trig. functions have in common is 225 degrees. Unless I've misread your matrix entries, this is the angle of rotation.

Looking for something else?

Not the answer you are looking for? Search for more explanations.