A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 5 years ago
I'm working on trig identities and in need of some help :
(1sec x)/(1+sec x)= (cos x1)/(cos x+1)
AND
(cos x)/(1+sin x) + (1+sin x)/ (cos x)= 2 sec x
anonymous
 5 years ago
I'm working on trig identities and in need of some help : (1sec x)/(1+sec x)= (cos x1)/(cos x+1) AND (cos x)/(1+sin x) + (1+sin x)/ (cos x)= 2 sec x

This Question is Closed

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Your first one can be solved by the definition of secant:\[\frac{1\sec x}{1+ \sec x}=\frac{1\frac{1}{\cos x}}{1+\frac{1}{\cos x}}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0\[=\frac{\frac{\cos x1}{\cos x}}{\frac{\cos x +1}{\cos x}}=\frac{\cos x 1}{\cos x +1}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0(11/cosx)/(1+1/cosx) =(cosx1)/cosx/(cosx+1)/cosx =(cosx1)(cosx+1)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0\[\frac{\cos x}{1+\sin x}+\frac{1+ \sin x }{\cos x}=\frac{\cos^2x+(1+\sin x)^2}{\cos x (1+\sin x)}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0\[=\frac{\cos^x+1+2\sin x + \sin^2x}{\cos x(1+\sin x)}=\frac{2+2\sin x}{\cos x (1+\sin x)}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0\[=\frac{2(1+\sin x)}{\cos x (1+\sin x)}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0\[=\frac{2}{\cos x}=2\sec x\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0What are the identities used to get from this one fraction to the next? cos x +1+2sin x+ sin ^{2} x div cos x times 1 + sin x = 2+ 2 sin x div cos x times 1 + sin x

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I thought that's what you were writing about...\[\frac{\cos^2x+1+2\sin x+\sin^2x}{\cos x(1+\sin x)}\]\[=\frac{(\cos^2 x+ \sin^2 x)+1+2\sin x}{\cos x (1+\sin x)}\]\[=\frac{1+1+2\sin x}{\cos x(1+\sin x)}=\frac{2+2\sin x}{\cos x(1 + \sin x)}=\frac{2(1+\sin x)}{\cos x(1+\sin x)}\]

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0It's just the \[\cos^2x + \sin^2 x =1\] identity.

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0Both of you, thank you so very much for your expertise with this problems, it helps me greatly!!!! I really appreciate it! :)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0You're welcome :) Thanks for the appreciation  not everyone bothers to say thank you!

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0I mean it, I am very greatful for the help, thanks for taking the time to help me, you deserve a thank you, you both do :)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0my pleasure;) @lokisan i bother if my network doesnot fail;)

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0my pleasure;) @lokisan i bother if my network doesnot fail;)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.