anonymous
  • anonymous
how can we prove that a(n) = n/n+1 converges by using the definition? I know how to find the limit, yet I can't seem to find a way to prove it using the definition
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I might be able to help you. I would consider the following:\[\lim_{n->\infty}\frac{n}{n+1}=\lim_{n->\infty}\frac{1}{1+\frac{1}{n}}\]and from limit laws, \[\frac{1}{1+\lim_{n \rightarrow \infty} \frac{1}{n}}\]Now, for \[\lim_{n \rightarrow \infty}\frac{1}{n}\]choose \[\epsilon >0\] small. Let N be the first integer greater than \[\frac{1}{\epsilon}\]Then\[\forall n>N \rightarrow n>\frac{1}{\epsilon} \iff \forall n>N \rightarrow \epsilon >\frac{1}{n} \iff \frac{1}{n}< \epsilon\]Since n>0,\[0<\frac{1}{n}< \epsilon \iff 0<\frac{1}{n} - 0 < \epsilon\] and so, by definition of the limit,\[\frac{1}{n} \rightarrow 0 \] as \[n \rightarrow \infty\]
anonymous
  • anonymous
So,\[\lim_{n->\infty}\frac{n}{1+n}=\lim_{n->\infty}\frac{1}{1+\frac{1}{n}}=\frac{1}{1+\lim_{n->\infty}\frac{1}{n}}=\frac{1}{1+0}=1\]
nowhereman
  • nowhereman
You even do not need that limit law, if you already know the limit. Just calculate \[|1-\frac{n}{1+n}| = \frac{1}{1+n}\] so need only find n for ε so that \[\frac 1 {1+n} < ε ⇔ n > \frac 1 ε - 1\] Thus if you choose \[ n = \frac 1 ε \] everythings fine.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
thank you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.