anonymous
  • anonymous
Find the volume of the solid of revolution generated by rotating around the x-axis the region bounded by y=3^x-x^2 and y=0...
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
it is better to use disc method to find the volume in this particular case. take any point x then for that point your y will be given according to your equation if you rotate it , it will generate a disc of radius y. for an interval dx the volume will be pi*y^2*dx. you have to find the total area , in that case you have to integrate it . \[\int\limits_{}^{} \pi*y ^{2}*dx= \int\limits_{}^{} \pi*(3^{x}-x ^{2})^{2}*dx\] i have not use any limit when doing the integration . you can choose your limit. it is better no to choose x=infinity as it will give your area infinity.

Looking for something else?

Not the answer you are looking for? Search for more explanations.