anonymous
  • anonymous
if I am trying to find the limit of e^(-xy)cos(x+y) as (x,y)->(1,-1) what would be good numbers to try
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Hi d4millers, The exponential and trigonometric functions are functions that obtain their limits (some functions don't). Polynomials are another example of functions that obtain their limits. So, in these cases, the limits can be found by substitution of the limit-point. Here, sub. (1,-1) into your equation to get,\[\lim_{(x,y) \rightarrow(1,-1)}e^{-xy}\cos(x+y)=e^{-(1)(-1)}\cos((1)+(-1))\]\[=e^1{\cos(0)}=e\]
anonymous
  • anonymous
I'm sorry Lokisan, for mis info. I am trying to see if the limit exists. So In essence I am checking different paths but am getting confused in which way to go. if that makes sense.

Looking for something else?

Not the answer you are looking for? Search for more explanations.