anonymous
  • anonymous
L^-1[(s^2)+2s+1]/[(s^2)+2s+4]=?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I don't know how much detail you need, but,\[\frac{s^2+2s+1}{s^2+2s+4}=\frac{(s^2+2s+(1+3))-3}{s^2+2s+4}=\frac{(s^2+2s+4)-3}{s^2+2s+4}\]\[=1-\frac{3}{s^2+2s+4}=1-\frac{3}{(s+2)^2}\]
anonymous
  • anonymous
The inverse Laplace of the quotient is then the sum of the inverse Laplaces. The inverse Laplace of 1 is the delta function, and the inverse Laplace of the second is 2e^(-2t)t
anonymous
  • anonymous
\[\delta (t)-3e^{-2t}t\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Sorry, scrap that - falling asleep...the second fraction is wrong, though the first part of the answer is right - the delta function. The second fraction is\[\frac{3}{(s+1)^2+3}=\sqrt{3}.\frac{\sqrt{3}}{(s-(-1))^2+(\sqrt{3})^2}\]which is in a form you can read off a table of inverted Laplace transforms as\[\sqrt{3}e^{-t}\sin \sqrt{3}t\]
anonymous
  • anonymous
So your inverse Laplace is really\[\delta (t) -\sqrt{3}e^{-t}\sin \sqrt{3}t\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.