L^-1[(s^2)+2s+1]/[(s^2)+2s+4]=?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

L^-1[(s^2)+2s+1]/[(s^2)+2s+4]=?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I don't know how much detail you need, but,\[\frac{s^2+2s+1}{s^2+2s+4}=\frac{(s^2+2s+(1+3))-3}{s^2+2s+4}=\frac{(s^2+2s+4)-3}{s^2+2s+4}\]\[=1-\frac{3}{s^2+2s+4}=1-\frac{3}{(s+2)^2}\]
The inverse Laplace of the quotient is then the sum of the inverse Laplaces. The inverse Laplace of 1 is the delta function, and the inverse Laplace of the second is 2e^(-2t)t
\[\delta (t)-3e^{-2t}t\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Sorry, scrap that - falling asleep...the second fraction is wrong, though the first part of the answer is right - the delta function. The second fraction is\[\frac{3}{(s+1)^2+3}=\sqrt{3}.\frac{\sqrt{3}}{(s-(-1))^2+(\sqrt{3})^2}\]which is in a form you can read off a table of inverted Laplace transforms as\[\sqrt{3}e^{-t}\sin \sqrt{3}t\]
So your inverse Laplace is really\[\delta (t) -\sqrt{3}e^{-t}\sin \sqrt{3}t\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question