∫[e^(3t)sin(3t),dt]= ;limit(0,π)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

∫[e^(3t)sin(3t),dt]= ;limit(0,π)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

you will definitely need to use integration by parts
if you know the product rule, you can derive the formula for integration by parts
if you don't know the product rule, you can use the definition of derivative to find the formual for the product rule

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Integrate by parts, setting e^(3x) equal to u and the trig function equal to v' each time. The 3's will cancel out every time, and you'll end up in the third term with the original integral; add it to the left and divide by two, you'll end up getting\[e^{3t}*1/6*(\sin(3t)-\cos(3t)).\] Evaluate it at the limits and out pops the value. :P
that is the exact ans I got when I integrated it, QuantumModulus.....But my final ans was -1/6(1+e^3pi)
Thenk you!

Not the answer you are looking for?

Search for more explanations.

Ask your own question