anonymous
  • anonymous
what does irrational mean when it comes to numbers
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
how many irrational number is ther between 1 and 6
anonymous
  • anonymous
In mathematics, an irrational number is any real number which cannot be expressed as a fraction a/b, where a and b are integers, with b non-zero, and is therefore not a rational number. Informally, this means that an irrational number cannot be represented as a simple fraction.
anonymous
  • anonymous
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
between 1 and 6, there is infinity of irrational numbers
anonymous
  • anonymous
i would apreciate a new fan =D
nowhereman
  • nowhereman
To be more precise, in the standard model, there are exactly as many irrational numbers in any non-empty interval as there are real numbers all together. If you assume the continuum hypothesis, that is \[ℵ_1\]
nowhereman
  • nowhereman
The reason for this is, that there are only countably many rational numbers and if you remove a countable set from a non-countable set, the result remains non-countable.
anonymous
  • anonymous
wow, I can see we have a philosopher aboard
anonymous
  • anonymous
Yes...the infinity of irrational numbers in a set bound by rational numbers is "greater" than the set of all rational numbers.
amistre64
  • amistre64
The way I 'splain this to my kids is that there are alot of numbers on the number line; some are rational and can be actually found, they stay put we you look at them up close. But then, there are these "irrational" numbers that are there, but no matter how close you look at them, they move a little. We usually pinpoint this "irrational" little tykes by confining them to radicals, or constants like "pi" and "e". But in the end, you never quite know where they've been or where they are going :)
amistre64
  • amistre64
Also, I think rational means : ratioed... can be put in a ratio form.. 4/7 is a ratioed number. Irrational numbers cannot be ratioed, ie, put in a ratio form...
nowhereman
  • nowhereman
Well, I wouldn't consider myself a philosopher. That was only a little set theory. @amitstre64: your explanation might be ok for children, but relies implicitly on an understanding of real numbers through approximation by a decimal fraction, while at the same time summoning a geometrical notion. Though in the geometrical sense an irrational number is just as fixed as any other real number. You can easily see that by constructing \[\sqrt 2\] as the diagonal of a square with side length 1. Of course from a practical standpoint you can always only observe any quantity up to a certain precision, but that's the case for anything and not only if its true value is irrational.

Looking for something else?

Not the answer you are looking for? Search for more explanations.